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Perturbation of parametrically excited solitary waves

S. Longhi*

Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
~Received 2 July 1996!

A direct perturbation analysis of solitary waves for a parametric Ginzburg Landau equation describing
parametric excitation of waves in nonlinear dispersive and dissipative systems is presented. The method is used
to study the influence on soliton dynamics of various perturbations, including external fields, stochastic driving
forces, higher-order effects, and soliton interactions. A remarkable and quite general result of the analysis is
that when the system is dissipative the dynamical motion induced by the perturbation is counteracted by the
dissipative term, making dissipative solitary waves less sensitive to perturbations than solitons in the conser-
vative case.@S1063-651X~97!04801-0#

PACS number~s!: 03.40.Kf, 47.35.1i, 42.65.Tg
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I. INTRODUCTION

Parametric excitation of solitary waves in dispersive, no
linear, and dissipative systems is a topic of considerable
terest in many area of physics. Examples include parame
excitation of surfaces waves in fluids@1–4#, spin waves in
ferromagnets@5–8#, convection in binary mixtures@9# and in
nematic liquid crystals@10#, and parametric excitation of op
tical solitons@11–13#. In general, the existence of localize
structures in these systems is due to the possibility of red
ing the dynamical equations of motion which govern t
physical problem to a universal equation for a complex or
parameteru5u(x,t). The simplest form of this equation i
given by @2,3,6–8#

] tu5~2l1 iq!u1mu*1 i ]x
2u1 iu2u* , ~1!

wherel.0 is the dissipation factor,q is a detuning param
eter, andm.0 is the parametric gain. Equation~1! is a para-
metric Ginzburg-Landau~PGL! equation which is known to
possess localized, motionless solitary-wave solutions@2#.
Previous studies on dynamical aspects of these local
structures were mainly restricted to the case of weak di
pation and weak parametric pumping@3,11#, or to the dissi-
pationless case@14#, where Eq.~1! can be deduced from
Lagrangian density@15#. In the former case, the evolutio
equations for the solitary wave are derived by considerin
as a perturbed soliton of the nonlinear Schro¨dinger ~NLS!
equation. Investigation of the dynamics of the NLS solit
under the action of dissipation and parametric excitation
demonstrated that, in contrast to the unperturbed case
which the soliton’s amplitude, phase and velocity may ta
arbitrary values, their stationary values are determin
uniquely in the presence of these perturbations@3,11#, and
only the soliton position remains undetermined. This d
namical behavior is closely related to the symmetry break
in the NLS equation induced by the parametric pump
@16#.

*On leave from Dip. di Fisica, Politecnico di Milano, P.zza L. d
Vinci 32, Milano 20133, Italy.
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Although this approach is capable of capturing the m
mechanism which governs parametric excitation of solit
waves, a remarkable feature of Eq.~1! is thatexactlocalized
structures exist and they arestable in a wide region of the
plane~l,m! without any assumption about the smallness ol
andm @2,7#. The stability of these waves in the general ca
has been recently addressed in Ref.@7# by direct linear sta-
bility analysis of the PGL equation. For physical applic
tions, a satisfactory theory of localized structures should a
address the question of the influence that perturbing te
have on the soliton dynamics. These perturbing terms
represent fields externally imposed, or can describe hig
order corrections to the dynamical model expressed by
~1! due to physical effects neglected at leading order; fina
they can arise from interaction with other localized structu
as well. It is clear that a satisfactory perturbation theory
parametrically excited solitary waves may not be develop
in general by considering Eq.~1! itself as a perturbed NLS
equation, or, equivalently, by treating the solitary waves
the PGL equation as perturbed NLS solitons. The need f
direct perturbation theory of parametric solitons becom
particularly apparent when considering the strongly dissi
tive limit of Eq. ~1!, where dissipation becomes comparab
to or larger than dispersion and nonlinearity of the syste
Here we use the term soliton in a loose sense to indica
localized solution of the underlying equation without nece
sarily assuming integrability of the equation. In this case,
phase, amplitude, and velocity of the unperturbed soliton
fixed, and it is expected that the effects of perturbations
to introduce a slow motion of the soliton position, which
the only degree of freedom allowed by the translational
variance of the unperturbed equation.

The aim of this paper is to introduce a direct perturbat
theory to study the dynamics of parametrically excited so
tary waves under the action of perturbations. In particu
the effects of external fields, stochastic perturbations, high
order corrections to Eq.~1!, and soliton interactions are dis
cussed. The adiabatic evolution of the soliton position
duced by the perturbation field is here derived as
solvability condition in a multiple scale expansion by using
direct perturbation approach@17–19#. It is shown that dissi-
pation in the unperturbed equation is crucial in setting up
asymptotic expansion and may profoundly affect the soli
1060 © 1997 The American Physical Society
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55 1061PERTURBATION OF PARAMETRICALLY EXCITED . . .
dynamics. In particular, it turns out that the typical tempo
scale over which the soliton motion occurs is of ordere22 if
Eq. ~1! is dissipative, ande21 for the conservative problem
~i.e., forl50!, where the smallness parametere2 defines the
order of magnitude of the perturbation. A remarkable phy
cal implication thereof is that dissipative solitary waves a
less sensitive to perturbations than conservative solito
This feature can be best visualized by considering the we
dissipative limit of Eq.~1!, where the solitary wave behave
like a particle in an external field, and dissipation acts a
viscous force which counteracts the motion induced by
perturbation.

The paper is organized as follows. In Sec. II we revi
the basic properties of solitary waves for the PGL equat
~1! which are needed to set up a perturbation theory. In S
III the dynamical equations of motion for the soliton positio
under the action of a generic perturbation are derived
using a multiple scale expansion method. Finally, in Sec.
these equations are used to study the effects on soliton
tion induced by particular perturbations which may be
interest for applications. In particular, effects of extern
driving fields, higher-order terms in Eq.~1!, noise sources
and soliton interactions are analyzed in detail. These
amples allow us to illustrate the different reaction of dissip
tive versus conservative solitons to perturbations.

II. SOLITARY WAVES OF THE PGL EQUATION

The questions of existence and stability of solitary wav
for the PGL equation~1! were investigated in previous pa
pers @2,3,7#. In this section we review the basic results
these analyses which are needed to develop a perturb
theory. Localized solutions of Eq.~1! have the wave form@2#

u6~x!5&b6 sech@b6~x2j!#exp~ iw! ~2!

where the phasew and the amplitudeb6 of the solitary wave
are given by

cos~2w!5l/m, b6
2 52q6Am22l2, ~3!

and j is an arbitrary real constant parameter which defi
the soliton position. Contrary to the soliton solutions of t
NLS equation, which depend on four arbitrary real para
eters~soliton position, phase, velocity and amplitude!, a re-
markable feature of the solitary wave~2! is that its ampli-
tude, velocity and phase are fixed, and its position is the o
allowed degree of freedom. This feature is closely related
the fact that the parametric term in Eq.~1! breaks three of the
four symmetries which are typical of the NLS equati
@3,16#. Strictly speaking, for a chosen value ofb in Eq. ~3!,
the phase of the solitary wave may assume two values w
differ each other byp, so that two polarities can be assoc
ated to the solitary wave~2!.

The domain of existence of solitary waves~2! is trivially
determined by the conditionb6.0. Stability of these solu-
tions against small perturbations is a crucial point wh
must be considered to derive a perturbation theory of
PGL equation. Some analytical and physical insights into
stability problem may be obtained by using an adiabatic
proach based on the unperturbed NLS equation assoc
with Eq. ~1! @3,11,16#. This method, however, has limite
l
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validity, as it cannot predict all classes of instability, and
assumes weak dissipation and weak parametric pumpin
more global stability analysis of solitary waves for the PG
equation has recently been given in Ref.@7# by using stan-
dard linear stability methods. Although this way a comple
investigation of the stability problem can be done only n
merically, this is not a serious limitation from the point o
view of a perturbation theory of the PGL equation. In fact
will be shown that the leading-order effects of the perturb
tion can be captured analytically with only the knowledge
the exact solitary-wave form ~2!. By setting
u5u61(n11 in2)exp(iw) in Eq. ~1!, wheren1 and n2 are
small real perturbations, the linearized equations which g
ern the evolution of perturbations are given by

] tS n1
n2

D5LS n1
n2

D . ~4!

The linear operatorL in Eq. ~4! is defined by

L5SL11L21 L12
L22D ~5!

where

L1150,

L12522q2b6
2 2]x

222b6
2 sech2@b6~x2j!#,

L2152b6
2 1]x

216b6
2 sech2@b6~x2j!#,

L22522l.

The solitary wave given by Eqs.~2! and~3! is linearly stable
provided that Re~s!<0 for each eigenvalues of the linear
operatorL. The continuous eigenvalue spectrum ofL can be
easily calculated by considering the asymptotical behavio
Eq. ~4! asx→`, and is given by

s6~V!52l6Am22~V22q!2, ~6!

whereV is an arbitrary real parameter. The eigenfunctio
associated with these eigenvalues are the radiation m
whose asymptotical behavior asx→` is ~n1,n2!}cos(Vx) or
~n1,n2!}sin(Vx). From Eq. ~6! it follows that the solitary
wave ~2! is always unstable whenq.0. Forq,0, stability
against the growth of radiation modes is ensured provi
that the parametric pumpingm is less thanAl21q2. The
discrete eigenvalue spectrum of the operatorL may be com-
puted for general parameter values only numerically@7#.
Two general properties of the discrete eigenvalue spect
may, however, be stated:~1! s50 belongs to the discrete
spectrum, i.e., the operatorL is singular; and~2! for the
solutionu2 there always exists an eigenvalue with a posit
real part. The first property is merely a consequence of
translational invariance of Eq.~1!, so that the translation
mode]xu6 is always an eigenvector ofL corresponding to
the zero eigenvalue. The second property can be dem
strated by using the maximum principle for positive defin
operators@7#, and shows that the solitary waveu2 is always
linearly unstable, in agreement with the predictions of t
adiabatic method@3#. Therefore, in the following, we will
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1062 55S. LONGHI
consider only the solutionu1 corresponding to the uppe
sign in Eq. ~3!. The stability of this solution in the plan
~l,m! is hence contained between the linesm5l and m
5Al21q2 which define the boundaries of existence and
stability with respect to radiation modes of solitary wave
respectively. These are in fact the exact stability bounda
predicted by the adiabatic analysis@3#. Direct numerical
computation of the discrete eigenvalue spectrum shows
deed that, for a wide range of parametersl andm inside this
domain, all other discrete eigenvalues of the operatorL have
a negative real part@7#. However, a comparison of the sta
bility domains as obtained from the adiabatic analysis a
from direct linear stability analysis shows that an instabil
due to the emergence of a discrete eigenvalue with a pos
real part may arise for weak dissipation and for strong pa
metric pumping@7#. The effects of this instability on the
soliton dynamics were numerically investigated in Ref.@20#.
In this paper we will consider only parameter values wh
such instability is absent and the solitary wave~2! is linearly
stable. This implies, in particular,q,0 and l,m
,Al21q2. As a final remark, it should be noted that in th
dissipationless case, i.e., forl50, the system described b
Eq. ~1! is conservative, as it can be derived from a Lagra
ian density@14,15#. In this case the eigenvalues~6! of the
continuous spectrum lie on the imaginary axis, indicat
that the solitary wave~2! is marginally stable with respect t
radiation modes.

III. EVOLUTION EQUATIONS
FOR THE PERTURBED SYSTEM

In this section the evolution equations for the solita
wave under the influence of a perturbation are derived
solvability conditions in a multiple scale perturbation expa
sion analysis. This method is quite standard, and it cons
of assuming as the solution at leading order in the pertu
tion expansion a solitary wave of the unperturbed sys
whose free parameters are allowed to vary slowly in tim
The slow time evolution of the soliton parameters is th
obtained by eliminating secular terms arising in the pert
bation expansion@3,17,18,21#. The starting point of the
analysis is provided by Eq.~1! with a perturbation term

] tu5~2l1 iq!u1mu*1 i ]x
2u1 iu2u*1e2P@u#, ~7!

where e2 is a small parameter which defines the order
magnitude of the perturbationP[u]. The problem is to con-
struct an asymptotic approximation of the perturbed solut
u5u(x,t;e) ase→0 which is valid uniformly in time. There-
fore, we seek a perturbation expansion ofu in the form

u5@u~0!1eu~1!1e2u~2!1•••#exp~ iw0!, ~8!

where the constant phase factorw0 in Eq. ~8! will be defined
later, and we require that the asymptotic expansion~8! be
uniformly valid in time. This condition can be generally sa
isfied assuming the unperturbed solitary wave~2! as a solu-
tion at leading order in the expansion~8! provided that the
soliton positionj is allowed to vary slowly in time. This
degree of freedom is fundamental in order to remove sec
terms that arise in the perturbation expansion. To this a
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we introduce a multiple scale for time; that is, we assu
that the order parameteru depends onT0 ,T1 ,T2 ,..., where

T05t, T15et, T25e2t,... . ~9!

We note explicitly that the ansatz~8! and ~9! allows the
correction to the unperturbed solitary wave to be of low
order @O~e!# than the perturbing term@which is of O~e2!#,
and the soliton position to vary on a shorter time sc
~;e21! than that which is naturally associated with the p
turbation~i.e.,;e22!. The justification for this choice will be
clear later. Essentially, it is related to the possibility of s
isfying the secularity conditions when the PGL equation~1!
becomes conservative. Furthermore, as we want to study
influence of perturbations both in dissipative~lÞ0! and in
conservative~l50! cases, it is useful to setl5l01el1.
Hence the dissipative case corresponds tol0Þ0, whilel050
andl1Þ0 correspond to what we will call the weakly diss
pative limit. Note that in this limit dissipation is weak, but o
lower order than the perturbatione2P. In order to distinguish
the weakly dissipative limit from the genuine dissipati
case, we will call the latter one the strongly dissipative lim
Finally, the conservative case is recovered from the wea
dissipative limit by further settingl150; any eventual dissi-
pative term of ordere2 can be included into the perturbatio
P.

Introducing ansatz~8! into Eq. ~7!, using the derivative
rule ] t5]T01e]T11e2]T21••• and collecting the terms o
the same order in the equation so obtained, a hierarch
equations for successive corrections tou is obtained. If the
phase w0 in Eq. ~7! is chosen in such a way tha
cos~2w0!5l0/m, it follows that the solitary wave solutionu

~0!

at leading order is given by

u~0!~x!5&bd sech@b~x2j!#, ~10!

whereb5@2q1~m22l0
2!1/2#1/2, d561, and the soliton posi-

tion j is an arbitrary function of the slow time variable
T1 ,T2 ,..., but is constant with respect toT0, i.e., ]T0j50.
Note that, in writing Eq.~10!, we have explicitly shown the
two allowed values of the solitary wave phase by introduc
the parameterd. The equations at higher orders may be c
in the form

]T0u
~k!2Lu~k!5G~k! ~11!

~k51,2,3,...!, where the linear operatorL is given by Eq.~5!
with l5l0, andG

(k) depends only on functions of previou
approximations. In particular, one has

G~1!52l1u
~0!2]T1u

~0!, ~12!

G~2!52l1u
~1!2]T1u

~1!2]T2u
~0!1 iu ~0!u~1!@2u~1!*1u~1!#

1P@u~0! exp~ iw0!#exp~2 iw0!. ~13!

In general, because the operatorL is singular, the solution
u(k) of Eq. ~11! will not be a limited function ofT0 unless the
driving termG(k) in the equation is orthogonal to the nu
space of the adjoint operatorL1. Thus, to avoid secula
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55 1063PERTURBATION OF PARAMETRICALLY EXCITED . . .
terms in Eq.~11!, which prevent the solutionu(k) from being
bounded in time, the following solvability conditions mu
be satisfied:

~G~k!,w!50, ~14!

wherew is the singular eigenvector of the adjoint opera
L1, and the brackets indicate the inner product defined b

~A,B!5ReF E
2`

1`

A* ~x!B~x!dxG .
This corresponds to the usual scalar product inR2 once the
complex quantities are separated into real and imagin
parts. Hence the solvability conditions~14! allow one to de-
termine the evolution equation of the soliton positionj on
various slow time scales. The singular eigenvectorw of the
adjoint operatorL1 is computed in Appendix A, and is give
by

w~x!522l0f @b~x2j!#1 i ]xu
~0! ~15!

where the explicit expression of the real functionf (y) is
given by Eqs.~A18! and~A19! in the same appendix. It turn
out that f is an odd function of~x2j!, has only one zero a
x5j, and assumes opposite sign as]xu

(0). To further pro-
ceed in the analysis, the two casesl0Þ0 andl050 must be
distinguished.

A. Strongly dissipative limit „l0Þ0…

In this case, the solvability condition atO~e! yields

E
2`

1`

~]T1j]xu
~0!2l1u

~0!! f dx50, ~16!

where we used the relation]T1u
(0)5]ju

(0)]T1j5

2]xu
(0)]T1j. Becausef and ]xu

(0) are odd functions of~x
2j!, andu~0! is an even function, Eq.~16! yields

]T1j50, ~17!

i.e., the soliton position does not vary on the time scaleT1.
The solution at this order,u(1)5u 1

(1)1 iu 2
(1), then satisfies

the following equations:

]T0u1
~1!2L12u2~1!52l1u

~0!,

]T0u2
~1!2L21u1~1!12l0u2

~1!50.

It is straightforward to show that the former equation can
satisfied by settingu 2

(1)52(l1/2)(m
22l 0

2)21/2u(0), and
that the solutionu1

~1! of the latter equation may be chosen
be an even function of its argument. Applying the solvabil
condition atO~e2!, after observing that for trivial symmetr
properties the terms2l1u

~1! and iu (0)[2u(1)u(1)*1u(1)2] of
G~2! are orthogonal tow, we obtain the following evolution
equation for the soliton positionj on the time scaleT2:
r

ry

e

bm]T2j5ReF E
2`

1`

f P exp~2 iw0!dxG
2

1

2l0
ImF E

2`

1`

]xu
~0!P exp~2 iw0!dxG ,

~18!

where the parameterm.0 is defined by

m52
1

b E
2`

1`

f ]xu
~0!dx, ~19!

and the perturbationP is intended to be calculated fo
u5u(0) exp~iw0!. The total time derivative of the soliton po
sition is given by] tj5e]T1j1e2]T2j1••• . Then combin-
ing Eqs.~17! and ~18!, we finally obtain the following time
evolution equation:

bm] tj5e2 ReF E
2`

1`

f P exp~2 iw0!dxG
2

e2

2l0
ImF E

2`

1`

]xu
~0!P exp~2 iw0!dxG , ~20!

which is valid up to the long-time scale;e22. It should be
noted that the constantm defined by Eq.~19!, which gives a
measure of the soliton ‘‘inertia’’ to the applied perturbatio
is a function only of the parameterq given by Eq.~A6!,
which may vary in the interval 0,q,1. The limitsq→0 and
q→1 correspond tom→~l0

21q2!1/2 andm→l, respectively,
i.e., to the two stability boundaries of the solitary wave. N
merical computation ofm by use of Eqs.~A18! and ~A19!
shows that forq→0 the soliton massm diverges together
with the functionf , while the ratiof /m remains bounded. In
this limit, the last term on the right-hand side of Eq.~20!
may be neglected. Conversely, it turns out that the soli
mass remains limited and approaches the valuem51 in the
opposite limitq→1.

B. Weakly dissipative limit „l050…

In this case, the solvability condition atO~e! is always
satisfied, and the solution at this order is given by

u~1!5 i F f ]T1j2
l1

2m
u~0!G . ~21!

This fact is closely related to the conservative nature of
unperturbed PGL equation in the weakly dissipative lim
where the linear operatoriL becomes self-adjoint, and th
driving termG~1! associated with the slow soliton motion
always orthogonal to the singular eigenvector ofL @17#.
Hence the evolution equation of the soliton position on
time scaleT1 must be determined by imposing the solvabili
condition atO~e2!. The derivation of the solvability condi
tion at ordere2 is rather involved, and details of the calcul
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1064 55S. LONGHI
tions are given in Appendix B. It turns out that the evoluti
equation of the soliton position on the time scaleT1 is given
by

bm]T1
2 j12l1bm]T1j

1ImF E
2`

1`

]xu
~0!P exp~2 iw0!dxG50. ~22!

Using the derivative rule] t5e]T11e2]T21•••, and observ-
ing thatl5el1, from Eq. ~22! we finally obtain

bm] t
2j12lbm] tj

1e2 ImF E
2`

1`

]xu
~0!P exp~2 iw0!dxG50 ~23!

which is valid up to the time scalet;e21. In particular, for
l50, Eq.~23! describes the soliton dynamics for dissipatio
less systems.

Equations~20! and~23! represent the main results of th
section, and allow one to study the effects of a generic p
turbation on the soliton dynamics. Before discussing so
particular forms of the perturbationP, which will be the
subject of Sec. IV, a few general comments on the res
obtained and their limits of validity are in order. Contrary
the NLS equation, the PGL equation~1! has only transla-
tional symmetry, so that its solitary wave~2! has only one
family parameter, the soliton positionj. The effect of pertur-
bations on the solitary wave is merely to change the sol
position on a slow time scale. According to the dynami
equations~20! and~23!, the typical time scale over which th
soliton motion occurs is;e22 if the unperturbed PGL equa
tion is dissipative, and;e21 in the conservative case. Th
means thatdissipativesolitary waves react to the applie
perturbing field on a longer time scale thanconservativesoli-
tary waves. Hence we may conclude that dissipation in
unperturbedsystem plays a fundamental role in reducing t
motion induced by perturbations.

This rule is rather general, but perturbations exist
which such a rule is not valid. In fact, any perturbationP
such thatP@u~0! exp~iw0!#exp~2iw0! is a real function in-
duces a slow motion of dissipative solitons on the time sc
;e22 provided that the first integral on the right-hand side
Eq. ~20! does not vanish. On the contrary, for weakly dis
pative or conservative systems, from Eq.~22! it follows that
]T1j50, i.e., the perturbation does not induce a motion
the soliton on the time scalee21. Since Eq.~23! is only valid
up to the time scalee21, it is not capable of describing th
slow soliton motion on longer time scales, and solvabil
conditions at higher orders should be considered. In part
lar, one can find a general class of perturbations which
not induce any soliton motion if the system is conservati
while they cause a soliton motion if the system is dissipati
This class of perturbations is discussed in Appendix
where it is shown that a regular asymptotic expansion of
solution of Eq.~7! can be constructed in the conservati
case. In other words, the secularity conditions at each o
can be satisfied for these perturbations without requiring
slow-time dependence of the soliton positionj. This means
that the effect of the perturbation on the unperturbed sol
-
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is merely to introduce a static modification of its shape. A
final remark, we note that in dissipative systems a weak p
turbation does not excite radiation modes because the
tinuous eigenvalue spectrum of Eq.~4! has a negative rea
part. This is obvious in the strongly dissipative limit, whe
radiation modes are damped on the time scaleT0. In the
weakly dissipative limit, this result is still valid. In fact, in
this case the damping rate of the radiation modes is smal~of
order;e!, but it is of lower order than the perturbing term
~;e2!; that excludes excitation of radiation modes. Co
versely, in the conservative case the continuous spectrum
the linear operatorL lies on the imaginary axis, and th
solitary wave is marginally stable with respect to the grow
of radiation modes in the unperturbed problem. When
perturbation field is considered, secondary secularities~usu-
ally called resonances@18#! might arise whenever the driving
terms in Eq.~11! are resonant with radiation modes. Th
study of these resonances is a nontrivial matter, and wo
require the knowledge of the continuous part of the Gre
function associated with the operatorL @18#. This analysis,
however, goes beyond the purpose of this work and will
be done here.

IV. ANALYSIS OF SOME PARTICULAR
PERTURBATIONS

In this section we specialize the dynamical equations~20!
and~23! to study the effects of some particular perturbatio
on the soliton dynamics. These examples allow us to sh
the different behavior of dissipative and conservative solit
waves under the action of a perturbation.

~1! External driving force.As a first simple example o
perturbation, let us consider an external applied force, wh
we assume to be independent ofu and dependent only upo
x; i.e., let us assume

e2P5e2F~x!. ~24!

We further assume thatF(x) is a real function ofx and
varies slowly on the scale of order;b21. In this case, the
equation describing the soliton motion in the strongly dis
pative limit becomes

bm] tj5e2DS ]F

]x D
j

, ~25!

where

D5
cos~w0!

b2 E
2`

1`

y f~y!dy1
sin~w0!

2l0
&pd

is a constant parameter independent ofj. From Eq.~25! it
follows that the stationary fixed points of motion satisfy t
equation (]F/]x)j50; these equilibria are then stable stat
provided thatD(]2F/]x2)j,0. In the weakly dissipative
limit, Eq. ~23! yields instead

m] t
2j12lm] tj1De2S ]F

]x D
j

50, ~26!

where now
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D52
sin~w0!

b E
2`

1`

x]xu
~0!dx5

&pd sin~w0!

b
.

Equation~26! indicates that in this case the soliton behav
like a particle of massm in the potentialU(j)5e2DF(j)
under the action of a viscous force which is proportional
the dissipation coefficientl of the system. The stable equ
librium points of motion are hence represented by
minima of the potential. Note that, due to the presence of
viscous force, the motion induced by the external potentia
counteracted, and an equilibrium point is asymptotica
reached. In particular, the transient stage toward the equ
rium point j is oscillatory if l2,(1/m)(]2U/]x2)j , and
monothonic in the opposite case. In the conservative c
~l50!, the viscous force in Eq.~26! disappears, and oscilla
tions of the soliton position around the equilibrium points a
allowed.

~2! Higher-order terms.The dynamical model expresse
by the PGL equation~1! is usually obtained by neglectin
some higher-order terms which generally describe phys
effects of a small entity. Among these effects, here we c
sider the delay in the nonlinear response of the system
higher-order dispersion. These perturbations are of partic
interest in the optical context, where their effects may p
foundly affect soliton propagation in long distance solit
transmission systems@22#. The noninstantaneous response
the nonlinearity gives rise to the following perturbing term

e2P52 i e2u]xuuu2. ~27!

In the optical context, this perturbation describes nonlin
dissipation generated by the induced Raman scattering,
is responsible for a frequency downshift of optical solito
@22#. In the strongly dissipative limit, the equation for th
soliton position under the action of the perturbation~27! be-
comes

m] tj5
S

2l0
, ~28!

where the constant parameterS is given by

S5
2e2

b E
2`

1`

@u~0!]xu
~0!#2dx5

32

15
e2b4. ~29!

Hence the effect of delay in the nonlinear response is
induce a drift of the soliton position with a constant veloc
v516e2b4/15l0m which is of ordere2. In the weakly dissi-
pative limit, Eq.~23! yields instead

m] t
2j12lm] tj2S50, ~30!

whereS is given by Eq.~29!. Therefore, iflÞ0, the effect of
the perturbation is the same as in the strongly dissipa
limit, except that now the constant drift velocity is of ordere.
In the conservative case, which is obtained by settingl50 in
Eq. ~30!, the soliton motion is different, and is characteriz
by a continuous acceleration. This result is analogous to
predicted for conservative solitons in the NLS equatio
where the acceleration of the soliton is also associated w
continuous frequency downshift@22#. Hence the acceleratio
of the solitary wave stabilizes when the system is dissipat
s
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and it travels with a small constant velocity. The other p
turbation we briefly discuss is related to third-order disp
sion, and is given by

e2P5e2]x
3u. ~31!

In the strongly dissipative limit, the effect of the perturbatio
~31! is to induce a constant drift of the soliton position
ordere2 in a similar way as for the perturbation~27!. In the
weakly dissipative limit, from Eqs.~22! and ~31! it follows
that the driving term vanishes and]T1j50. In other words,
in this case the perturbation~31! does not induce a soliton
motion on the slow time scale;e21, and solvability condi-
tions at higher orders should be considered. We note
perturbation~31! belongs to the general class of perturb
tions discussed in Appendix C, and therefore in the cons
vative case third-order dispersion does not induce a drif
the soliton.

~3! Stochastic perturbations.When the physical system i
subjected to noise sources, the soliton positionj may un-
dergo a stochastic motion due to the translational invaria
of Eq. ~1!. This effect is well known for the NLS equatio
and, in nonlinear optics, it is known as the Gordon-Ha
effect @23#. The effect of noise on the soliton dynamics c
be captured by assuming a perturbation of the form

e2P5e2s~x,t !, ~32!

wheres5s11is2 is an appropriate complex stochastic va
able whose statistical properties depend upon the phys
nature of noise. A simple case is that where the stocha
field s can be represented by two real independent Gaus
stochastic functionss1 ands2 of zero mean value with cor
relations defined as

^s1~x,t !s2~x8,t8!&50,

^s1~x,t !s1~x8,t8!&5D1d~x2x8!d~ t2t8!,

^s2~x,t !s2~x8,t8!&5D2d~x2x8!d~ t2t8!. ~33!

For instance, in the context of optical solitons, stochas
sources with correlations given by Eq.~33! may describe
quantum fluctuations as well as phase noise~such as that due
to guided-acoustic-wave Brillouin scattering! @24#. Setting
Eq. ~32! into Eq.~20! and using the correlations given by E
~33!, we find that the equation of motion for the soliton p
sition in the strongly dissipative limit is described by th
Langevin equation

bm] tj5S~ t !, ~34!

where the zero mean value, real stochastic termS(t) is d
correlated with the diffusion constant

D5e4D1E
2`

1`F f cos~w0!1
1

2l0
sin~w0!]xu

~0!G2dx
1e4D2E

2`

1`F f sin~w0!2
1

2l0
cos~w0!]xu

~0!G2dx.
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1066 55S. LONGHI
The motion of the soliton is hence described by a Wie
process. The mean-square fluctuations of the solitary-w
position increases linearly with time according to the law

^@Dj~ t !#2&5S D

mb D 2t, ~35!

whereDj(t)5j(t)2j0 andj0 is the soliton position att50.
In the weakly dissipative limit, the equations of motion f
soliton positionj and soliton velocityv are

] tj5v,

mb] tv522mlbv1S~ t ! ~36!

where the real stochastic termS(t) is d correlated with the
diffusion constant

D5 4
3 e4b3@D1 cos

2~w0!1D2 sin
2~w0!#.

Equations~36! may be regarded as the Langevin equations
motion for a Brownian particle@25#. Assuming that at the
time t50 the soliton has the~deterministic! position j5j0
and velocityv50, it is straightforward to calculate the tim
evolution of the mean value and of the mean square fluc
tion for the soliton position with standard techniques@25#.
We find

^j~ t !&5j0 , ~37!

^@Dj~ t !#2&5S Dt

mb D 2F2
3t

2
2

t

2
exp~22t/t!

12t exp~2t/t!1t G ~38!

wheret51/2l is the damping time associated with the v
cous force. From Eq.~38! it follows that, for timest much
shorter than the damping timet, the behavior of̂ @Dj(t)#2&
may be approximated as

^@Dj~ t !#2&'
1

3 S D

mb D 2t3,
i.e., in the first stage the variance of the soliton posit
increases with the third power of timet. Conversely, for
times t larger thant, one has

^@Dj~ t !#2&'S Dt

mb D 2t,
i.e., the variance of the soliton position increases linea
with time as in the strongly dissipative limit. The conserv
tive case is recovered from Eq.~36! by settingl50. In this
case, the mean square fluctuation of the soliton positio
given by

^@Dj~ t !#2&5
1

3 S D

mb D 2t3, ~39!

which has a time-dependence typical for NLS solitons@23#.
A comparison of Eqs.~35! and ~39! clearly indicates that
r
ve

f

a-

n
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dissipation in the original system is able to reduce stron
the stochastic motion of solitons induced by external noi

~4! Soliton interactions. The perturbative approach deve
oped in Sec. III can be used to study interactions betw
two ~or more! weakly overlapping solitary waves. Th
method is rather general and may be applied both to con
vative and dissipative systems@17,26,27#. It consists of as-
suming a superposition of two individual solitary waves
positionsj1 andj2 as a solution of the nonlinear wave equ
tion ~1!. Because of the nonlinearity, this solution is not e
act, but it represents a reasonable approximation provi
that the solitary waves are weakly overlapping, i.e.,
1!b~j22j1!. The overlapping terms arising from the nonlin
earity in the wave equation may then be regarded as pe
bations to two wave equations for single solitary waves@26#.

Using standard approximations to calculate overlapp
integrals@26#, in the strongly dissipative limit we obtain th
following equations for the soliton positionsj1 andj2:

] tj15
8b3d1d2

l0m
exp@2b~j22j1!#,

] tj252
8b3d1d2

l0m
exp@2b~j22j1!#. ~40!

The evolution equation for the soliton separationDj5j22j1
is hence

] tDj52
16d1d2b

3

ml0
exp~2bDj!. ~41!

From Eq.~41! it follows that, according to previous result
@11,13,14#, the two solitary waves attract each other f
d1d251, i.e., if they have the same polarity, whereas th
repel ford1d2521, i.e., if they have opposite polarity. In th
former case, the soliton separation decreases with time,
the waves collide. However, the perturbative approach m
not be used to study soliton dynamics during collision wh
their separation becomes comparable tob21. Previous nu-
merical investigations on the two-wave states for the P
equation have shown that, in the dissipative case, the
attracting solitary waves collapse into a single solitary wa
with the same polarity, and that, during the collision, half
the field energy is transferred into dispersive waves wh
are rapidly attenuated with propagation@13#. The previous
analysis can be easily extended to study soliton interact
in an extended chain of weakly overlapped solitary wav
Because of soliton interactions decreasing exponentially w
soliton separation, only nearest-neighbor overlapping te
may be considered in the perturbationP. In this case, the
coupled equations for the soliton positionsjn in the chain are
given by

] tjn5
8b3

l0m
„dndn11 exp@2b~jn112jn!#

2dndn21 exp@2b~jn2jn21!#…, ~42!

wheredn is the polarity of thenth solitary wave in the chain
andjn11.jn . According to Ref.@13#, an infinitely extended
chain of solitary waves with polarity alternation~i.e.,
dndn11521! and uniform spacingD ~bD@1! is a stable
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solution of Eqs.~42!. This solution corresponds to exact p
riodic solutions of the PGL equation in the form of cnoid
waves@2,13#.

Let us now consider interactions between two solitons
the weakly dissipative limit. In this case, from Eq.~23! we
obtain the following dynamical equations:

m] t
2j112lm] tj1216b3d1d2 exp@2b~j22j1!#50,

~43!
m] t

2j212lm] tj2116b3d1d2 exp@2b~j22j1!#50.

From Eqs.~43! it follows that the soliton separationDj sat-
isfies the equation

m] t
2Dj12lm] tDj132b3d1d2 exp~2bDj!50, ~44!

which may be interpreted as the equation of motion o
particle of massm in the potential

U~Dj!5232b2d1d2 exp~2bDj!

under the action of a viscous force. As in the strongly dis
pative case, the force is attractive if the solitary waves h
the same polarity, and repulsive in the opposite case. Ge
alization of Eqs.~43! to a chain of weakly overlapped sol
tary waves is straightforward, and yields

m] t
2jn12lm] tjn216b3

„dndn11 exp@2b~jn112jn!#

2dndn21 exp@2b~jn2jn21!#…50. ~45!

In the case of an infinite chain of solitons with polarity a
ternation~dndn11521!, Eq. ~45! show that the dynamics o
solitary waves due to their weak interaction is described b
Toda lattice model with friction@28#. Because of the friction
term, any internal oscillation of the lattice is damped and
periodic solutions of the PGL equation with uniform solito
spacingD ~bD@1! are asymptotically reached. On the co
trary, in the conservative limit, the friction term in Eq.~45!
disappears, and collective excitations of the lattice are
lowed. In particular, compression waves at a constant ve
ity may propagate through the lattice@28#; they are given by

r n52
1

b
ln@11v2 sech~Sn6vt !#, ~46!

where r n5jn2jn212D are the displacements of solitar
waves in the chain from the periodic solution with unifor
spacingD, v5@16b4 exp~2bD!/m#1/2 sinhS, andS is an ar-
bitrary parameter which determines the velocity of propa
tion and the compression factor of the collective wave.

V. CONCLUSIONS

In this paper the dynamics of parametrically excited so
tary waves induced by perturbations has been theoretic
investigated by using a direct perturbation approach. As
parametric term in the unperturbed equation breaks thre
the four symmetries which are typical of the NLS equatio
the effects of a generic perturbation on the soliton dynam
is simply to induce a motion of the soliton on a slow-tim
scale. It has been shown that the typical temporal scale
which the soliton motion occurs depends strongly on
n
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conservative or dissipative character of the unpertur
problem. As a rather general rule, it turns out that dissipat
in the unperturbed system is able to counteract the mo
induced by perturbations. This behavior has been discus
in detail by considering some particular perturbations, wh
include external driving fields, higher-order correction term
in the unperturbed equation, noise sources, and soliton in
actions. We envisage that such results may be of inte
both from a fundamental point of view in understanding no
linear dynamics of dissipative versus conservative solit
under the action of perturbations, and from an applicat
point of view as well whenever robustness of soliton so
tions is required.

ACKNOWLEDGMENTS

Work was supported in part by the Joint Services El
tronics Program under Contract No. DAAH04-95-1-003
The author acknowledges financial support by Associazi
Elettrotecnica ed Elettronica Italiana, as well as E. P. Ipp
and G. Steinmeyer for useful suggestions.

APPENDIX A: SINGULAR EIGENFUNCTION
OF THE ADJOINT PROBLEM

In this appendix the singular eigenfunctionw of the ad-
joint operatorL1 is calculated. Let us first note that, becau
L11, L12, L21, andL22 are self-adjoint, one has

L15SL11L12 L21
L22D5S 0

L12
L21

22l0
D . ~A1!

Therefore the singular eigenfunctionw5w11 iw2 satisfies
the equations

L21w250, ~A2!

L12w152l0w2 . ~A3!

Equation~A2! has the solutionw25]xu
(0), whereas Eq.~A3!

can be satisfied by settingw1522l0f [b(x2j)], where the
function f (y) satisfies the following nonhomogeneou
second-order linear equation

S 2q21
2

cosh2 y
1]y

2D f5h~y!, ~A4!

with the boundary conditions limy→6` f (y)50. In Eq. ~A4!
we set

h~y!52&d
sinh y

cosh2 y
~A5!

and

q5F2q2~m22l0
2!1/2

2q1~m22l0
2!1/2G

1/2

. ~A6!

Note that the parameterq given by Eq.~A6! may vary in the
interval @0,1# in order to ensure the stability of solitar
waves. The solution of Eq.~A4! can be obtained by the
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method of variations of constants using a fundamental se
solutionsu1(y),u2(y) of the associated homogeneous eq
tion

S 2q21
2

cosh2 y
1]y

2Du50 . ~A7!

A set of fundamental solutions to Eq.~A7! can be easily
obtained by considering the variables

v5tanhy, ~A8!

u~y!5F~y!exp~6qy!. ~A9!

Introduction of Eqs.~A8! and ~A9! into Eq. ~A7! yields the
following equations for the unknown functionF~v!:

~12v2!]v
2F22~v7q!]vF12F50, ~A10!

which admit the elementary solutions

F1,2~v!5v7q ~A11!

The solutions given by Eq.~A11! correspond to the follow-
ing functions for the original variables

u1~y!5~ tanhy2q!exp~qy!, ~A12!

u2~y!5~ tanhy1q!exp~2qy!. ~A13!

The Wronskian ofu1 andu2 is given by

W5U u1]yu1

u2
]yu2

U522q~12q2!. ~A14!

BecauseWÞ0 whenq varies in the interval@0,1#, solutions
~A12! and~A13! are linearly independent. The solutionf (y)
of the nonhomogeneous equation~A4! is hence given by

f ~y!5V1~y!u1~y!1V2~y!u2~y!, ~A15!

where

V1~y!5E
y

1` h~z!u2~z!

W
dz, ~A16!

V2~y!5E
2`

y h~z!u1~z!

W
dz, ~A17!

and the constants of integration have been chosen by im
ing the vanishing off (y) for y→6`. Using the symmetries
V1(y)5V2(2y) andu1(y)52u2(2y), we finally obtain

f ~y!5T~y!2T~2y!, ~A18!

where

T~y!5
&d exp~qy!~ tanhy2q!

2q~12q2!

3E
2`

2y exp~qz!sinh z~ tanhz2q!

cosh2 z
dz. ~A19!
of
-

s-

APPENDIX B: SOLVABILITY CONDITION AT ORDER e2

In this appendix, the evolution equation~22! of the soliton
position on the time scaleT1 is derived by imposing the
solvability condition atO~e2!. From Eqs.~13! and ~21!, it
follows that the driving termG~2! is given by

G~2!5a0]T2j1 i @a11a2]T1j1a3~]T1j!21a4]T1
2 j#

1P@u~0! exp~ iw0!#exp~2 iw0!, ~B1!

where

a05]xu
~0!,

a15
l1

2m
u~0!F11

u~0!2

2m
G ,

a252l1f2
l1

2m
]xu

~0!2
l1

m
f u~0!2,

a35]xf1 f 2u~0!,

a452 f .

Because the eigenfunctionw of the adjoint problem is imagi-
nary and an odd function of~x2j!, the terms inG~2! propor-
tional toa0, a1, anda3 vanish when imposing the solvabilit
condition ~14!. Therefore we obtain

bm]T1
2 j1l1kb]T1j1ImF E

2`

1`

]xu
~0!P exp~2 iw0!dxG50,

~B2!

where the parametersm andk are given by

m52
1

b E
2`

1`

f ]xu
~0!dx52E

2`

1`

f ~y!]yg~y!dy,

~B3!

k5m2
b2

2m E
2`

1`

@]yg#2dy2
b2

m E
2`

1`

f ~y!g2~y!]yg~y!dy,

~B4!

and g(y)5&d/coshy. The expression of the parameterk
can be further simplified. In fact, the functionsf andg sat-
isfy the following equations:

~2q21]y
2! f1g2f5]yg, ~B5!

~211]y
2!g1g350. ~B6!

Multiplying both sides of Eq.~B5! by ]yg and integrating
over the interval~2`,1`!, we obtain
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E
2`

1`

~]yg!2dy5q2m1E
2`

1`

g2f ]yg dy1E
2`

1`

]y
2f ]yg dy.

~B7!

The last integral on the right hand side in Eq.~B7! can be
transformed by successive integrations by parts, using
~B6!, we obtain

E
2`

1`

]y
2f ]yg dy52E

2`

1`

]yf ~g2g3!dy

5E
2`

1`

f ~]yg23g2]yg!dy. ~B8!

Insertion of Eq.~B8! into Eq. ~B7! yields

E
2`

1`

~]yg!2dy5~q221!m22E
2`

1`

f g2]yg dy. ~B9!

After observing thatb2/m52/~12q2! from Eqs. ~B4! and
~B9!, one has

k52m. ~B10!

Putting Eq.~B10! into Eq. ~B2! we finally obtain Eq.~22!
given in the text.

APPENDIX C: REGULAR PERTURBATION EXPANSION
FOR CONSERVATIVE SOLITONS

In this appendix it is shown that for the PGL equation~1!
in the conservative case there exists a general class of
turbations which does not induce any soliton motion. T
means that a static~i.e., independent of timet! perturbation
expansion of the solitary wave for the perturbed Eq.~7! can
be constructed. The class of perturbations we consider
the form

P@u#5Fu, ~C1!

whereF is a linear, real operator, independent oft, satisfying
the property that, ifg is an arbitrary even~odd! function of
~x2j!, thenFg is an odd~even! function of ~x2j!. As an
example, any linear combination with real coefficients of o
erators of the form (x2j)n] x

m, with m andn positive inte-
gers andn1m odd, satisfies this property. From Eq.~18! it is
clear that in the strongly dissipative limit the driving term o
the right-hand side of the equation does not vanish, and
turbation ~C1! induces a soliton motion on the time sca
e22. In the conservative limit, we look for a regular pertu
bation expansion of the solutionu(x,e) of Eq. ~7! in the
form

u~x,e!5@u~0!~x!1au~1!~x!1a2u~2!~x!1•••#exp~ iw0!,
~C2!
q.

er-
s

as

-

r-

wherea5e2 andw05p/4. Substituting Eq.~C2! into Eq.~7!,
and collecting terms of the same order ina, a hierarchy of
equations for successive corrections tou is obtained. At
leading order,O~a0!, the solutionu~0! is given by Eq.~10!.
The equations at higher orders have the form

Lu~k!52G~k! ~C3!

whereL is the linear operator given by Eq.~5! with l50,
andG(k) are driving terms which depend only on function
of previous approximations. BecauseL is singular, due to the
Fredholm alternative theorem a bounded solution of Eq.~C3!
exists if and only if the driving term in the equation is o
thogonal to the singular eigenfunctionw5 i ]xu

(0) of the ad-
joint problem. Therefore the perturbation expansion~C2! is
consistent provided that the solvability condition
(G(k),w)50 are satisfied at any orderk. This can be easily
proved for k51 and 2. In fact, for k51 one has
G~1!52Fu~0!, which is a real function and therefore orthog
nal tow. The solution at this order is imaginary and is give
by u(1)5 ir1 , wherer1 is an odd function of~x2j! which
satisfies the equationL12r152Fu~0!. At orderk52, we have
G(2)522iu (0)uu(1)u22Fu~1!, which is trivially an imagi-
nary, even function of~x2j!. Hence it is orthogonal tow.
The solution atO~a2! is then given byu~2!5r2, wherer2 is
an even function of~x2j!, andL12r252Im@G2#. By recur-
sion, it is straightforward to show that, in general,G(k)(u(k))
is an imaginary~real! and even function of~x2j! for k even,
and a real~imaginary! odd function of~x2j! if k is odd. In
any case, the solvability conditions (G(k),w)50 are always
satisfied. To prove this property, let us assume that it is v
up to the orderk5n21 ~which, without loss of generality
we assume to be even!, and let us show that the same pro
erty is still valid for k5n andk5n11. In fact, the driving
termG(k) at orderk5n has the form

G~n!52 i(
m,s

u~m!u~s!u~n2s2m!*2Fu~n21!, ~C4!

where the sum in Eq.~C4! is extended to all non-negativ
integersm ands such that 0,s1m,n. Becausen is odd, it
follows that each term in the sum is composed of the prod
of three functions of odd order, or of the product of tw
functions of even order and one of odd order. In both cas
it turns out that each term is a real, odd function of~x2j!.
This is trivially true also for the last term in Eq.~C4!. Hence
G(k) is orthogonal tow. The solution atO(an) is then given
by u(n)5 irn , where the real functionrn is determined as the
solution of the equationL12rn52G(n). Furthermore, it is
obvious thatrn has the same parity asG(n). For k5n11,
similar arguments can be used to show thatG(n11) is an
imaginary and even function of~x2j!, and so it is orthogo-
nal to w. The solution atO(an11) is then given by
u(n11)5rn11, where the real functionrn11 has to be deter-
mined as the solution of the equatio
L21rn1152Im[G(n11)], and has therefore the same parity
G(n11). In conclusion, the solvability conditions at each o
der in the perturbation expansion are satisfied, and a hie
chy for successive approximations tou can indeed be con
structed. The difficult problem of asymptotic convergence
the resulting perturbation series is left out in our discussi
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