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Perturbation of parametrically excited solitary waves
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Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
(Received 2 July 1996

A direct perturbation analysis of solitary waves for a parametric Ginzburg Landau equation describing
parametric excitation of waves in nonlinear dispersive and dissipative systems is presented. The method is used
to study the influence on soliton dynamics of various perturbations, including external fields, stochastic driving
forces, higher-order effects, and soliton interactions. A remarkable and quite general result of the analysis is
that when the system is dissipative the dynamical motion induced by the perturbation is counteracted by the
dissipative term, making dissipative solitary waves less sensitive to perturbations than solitons in the conser-
vative case[S1063-651X97)04801-(

PACS numbe(s): 03.40.Kf, 47.35+i, 42.65.Tg

[. INTRODUCTION Although this approach is capable of capturing the main
mechanism which governs parametric excitation of solitary
Parametric excitation of solitary waves in dispersive, nonwaves, a remarkable feature of Efj) is thatexactlocalized
linear, and dissipative systems is a topic of considerable instructures exist and they astablein a wide region of the
terest in many area of physics. Examples include parametriglane(\,u) without any assumption about the smallnesa of
excitation of surfaces waves in flui§s—4], spin waves in  and x [2,7]. The stability of these waves in the general case
ferromagnet$5-8], convection in binary mixture®@] and in - has been recently addressed in H&l.by direct linear sta-
nematic liquid crystal$10], and parametric excitation of op- pility analysis of the PGL equation. For physical applica-
tical solitons[11-13. In general, the existence of localized tions, a satisfactory theory of localized structures should also
structures in these systems is due to the possibility of redugaddress the question of the influence that perturbing terms
ing the dynamical equations of motion which govern thehave on the soliton dynamics. These perturbing terms can
physical problem to a universal equation for a complex ordefepresent fields externally imposed, or can describe higher-
parameteiu=u(x,t). The simplest form of this equation is order corrections to the dynamical model expressed by Eq.

given by[2,3,6-4 (1) due to physical effects neglected at leading order; finally,
they can arise from interaction with other localized structures
Gu=(—N+i9)u+ pu* +id2u+iulu* (1) as well. It is clear that a satisfactory perturbation theory of

X 1

parametrically excited solitary waves may not be developed
in general by considering Edl) itself as a perturbed NLS
whereA>0 is the dissipation factor} is a detuning param- equation, or, equivalently, by treating the solitary waves of
eter, andu>0 is the parametric gain. Equatidh) is a para- the PGL equation as perturbed NLS solitons. The need for a
metric Ginzburg-LandagPGL) equation which is known to direct perturbation theory of parametric solitons becomes
possess localized, motionless solitary-wave solutififls  particularly apparent when considering the strongly dissipa-
Previous studies on dynamical aspects of these localizeive limit of Eq. (1), where dissipation becomes comparable
structures were mainly restricted to the case of weak dissito or larger than dispersion and nonlinearity of the system.
pation and weak parametric pumpif,11], or to the dissi- Here we use the term soliton in a loose sense to indicate a
pationless casgl4], where Eq.(1) can be deduced from a localized solution of the underlying equation without neces-
Lagrangian density15]. In the former case, the evolution sarily assuming integrability of the equation. In this case, the
equations for the solitary wave are derived by considering iphase, amplitude, and velocity of the unperturbed soliton are
as a perturbed soliton of the nonlinear Salinger (NLS)  fixed, and it is expected that the effects of perturbations are
equation. Investigation of the dynamics of the NLS solitonto introduce a slow motion of the soliton position, which is
under the action of dissipation and parametric excitation hathe only degree of freedom allowed by the translational in-
demonstrated that, in contrast to the unperturbed case, wariance of the unperturbed equation.
which the soliton’s amplitude, phase and velocity may take The aim of this paper is to introduce a direct perturbation
arbitrary values, their stationary values are determinedheory to study the dynamics of parametrically excited soli-
uniquely in the presence of these perturbatif®d1], and tary waves under the action of perturbations. In particular,
only the soliton position remains undetermined. This dy-the effects of external fields, stochastic perturbations, higher-
namical behavior is closely related to the symmetry breakingrder corrections to Eq1), and soliton interactions are dis-
in the NLS equation induced by the parametric pumpingcussed. The adiabatic evolution of the soliton position in-
[16]. duced by the perturbation field is here derived as a
solvability condition in a multiple scale expansion by using a
direct perturbation approagii7—19. It is shown that dissi-
*On leave from Dip. di Fisica, Politecnico di Milano, P.zza L. da pation in the unperturbed equation is crucial in setting up the
Vinci 32, Milano 20133, Italy. asymptotic expansion and may profoundly affect the soliton
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dynamics. In particular, it turns out that the typical temporalvalidity, as it cannot predict all classes of instability, and it
scale over which the soliton motion occurs is of ordef if assumes weak dissipation and weak parametric pumping. A
Eq. (1) is dissipative, and ! for the conservative problem more global stability analysis of solitary waves for the PGL
(i.e., forA=0), where the smallness parametérdefines the equation has recently been given in Rgf] by using stan-
order of magnitude of the perturbation. A remarkable physi-dard linear stability methods. Although this way a complete
cal implication thereof is that dissipative solitary waves areinvestigation of the stability problem can be done only nu-
less sensitive to perturbations than conservative solitongnerically, this is not a serious limitation from the point of
This feature can be best visualized by considering the weaklyiew of a perturbation theory of the PGL equation. In fact, it
dissipative limit of Eq.(1), where the solitary wave behaves will be shown that the leading-order effects of the perturba-
like a particle in an external field, and dissipation acts as aion can be captured analytically with only the knowledge of
viscous force which counteracts the motion induced by thehe exact solitary-wave form (2). By setting
perturbation. u=u.+ (v, t+ivy)exple) in Eq. (1), wherev, and v, are
The paper is organized as follows. In Sec. Il we reviewsmall real perturbations, the linearized equations which gov-
the basic properties of solitary waves for the PGL equatiorern the evolution of perturbations are given by
(1) which are needed to set up a perturbation theory. In Sec.

[l the dynamical equations of motion for the soliton position J ( Vl) _plh1 4
under the action of a generic perturbation are derived by Y, vy/"

using a multiple scale expansion method. Finally, in Sec. IV

these equations are used to study the effects on soliton mdhe linear operatoC in Eq. (4) is defined by

tion induced by particular perturbations which may be of

interest for applications. In particular, effects of external EZ(EH L1z (5)
driving fields, higher-order terms in E@l), noise sources Lo Lo

and soliton interactions are analyzed in detail. These ex-
amples allow us to illustrate the different reaction of dissipa-"
tive versus conservative solitons to perturbations.

here

£1,=0,
Il. SOLITARY WAVES OF THE PGL EQUATION L= — 20—32 — 92— 232 secﬁ[ﬁ (x—&)]
u X =+ * ’
The questions of existence and stability of solitary waves s 5
for the PGL equatior(1) were investigated in previous pa- Ly1=— B+ 05+ 6B% sech[B.(x—¢€)],
pers[2,3,7]. In this section we review the basic results of
these analyses which are needed to develop a perturbation Lo5=—2\.

theory. Localized solutions of Eql) have the wave forrmi2] } ) o
The solitary wave given by Eq§2) and(3) is linearly stable

U+ (X)=v28- secli B (x— &) ]expie) (2)  provided that Rer)<O0 for each eigenvalue of the linear
operatorL. The continuous eigenvalue spectrumf€an be
where the phase and the amplitud@.. of the solitary wave easily calculated by considering the asymptotical behavior of

are given by Eq. (4) asx—», and is given by
cog2¢)=Nu, Bi=-9*u?-\? 3 o (Q)=—NEu?— (07~ 9)?, (6)

and ¢ is an arbitrary real constant parameter which definegvhere(} is an arbitrary real parameter. The eigenfunctions
the soliton position. Contrary to the soliton solutions of theassociated with these eigenvalues are the radiation modes
NLS equation, which depend on four arbitrary real paramwhose asymptotical behavior &as- is (v1,v,)*cos(2x) or
eters(soliton position, phase, velocity and amplitida re-  (v1,v,)>sin(2x). From Eq.(6) it follows that the solitary
markable feature of the solitary wav®) is that its ampli- wave (2) is always unstable whef¥>0. For 9<0, stability
tude, velocity and phase are fixed, and its position is the onlygainst the growth of radiation modes is ensured provided
allowed degree of freedom. This feature is closely related téhat the parametric pumping is less thanya?+92. The
the fact that the parametric term in E@) breaks three of the discrete eigenvalue spectrum of the operatonay be com-
four symmetries which are typical of the NLS equationputed for general parameter values only numericify.
[3,16]. Strictly speaking, for a chosen value 8fin Eg.(3),  Two general properties of the discrete eigenvalue spectrum
the phase of the solitary wave may assume two values whichnay, however, be statedl) o=0 belongs to the discrete
differ each other byr, so that two polarities can be associ- spectrum, i.e., the operatdl is singular; and(2) for the
ated to the solitary wave). solutionu _ there always exists an eigenvalue with a positive
The domain of existence of solitary wavé? is trivially real part. The first property is merely a consequence of the
determined by the conditioB..>0. Stability of these solu- translational invariance of Eql), so that the translation
tions against small perturbations is a crucial point whichmoded,u.. is always an eigenvector af corresponding to
must be considered to derive a perturbation theory of théhe zero eigenvalue. The second property can be demon-
PGL equation. Some analytical and physical insights into thestrated by using the maximum principle for positive definite
stability problem may be obtained by using an adiabatic apeperatord7], and shows that the solitary wave is always
proach based on the unperturbed NLS equation associatdidearly unstable, in agreement with the predictions of the
with Eqg. (1) [3,11,16. This method, however, has limited adiabatic method3]. Therefore, in the following, we will
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consider only the solutiom, corresponding to the upper we introduce a multiple scale for time; that is, we assume
sign in Eq.(3). The stability of this solution in the plane that the order parameterdepends o, T,,T,,..., where
(\,u) is hence contained between the lingss\ and u

= /\Z+ 92 which define the boundaries of existence and of To=t, Ti=et, T,=¢€%,... . (9)
stability with respect to radiation modes of solitary waves,

respectively. These are in fact the exact stability boundarie¥ve note explicitly that the ansat8) and (9) allows the
predicted by the adiabatic analydi8]. Direct numerical correction to the unperturbed solitary wave to be of lower
computation of the discrete eigenvalue spectrum shows inerder [O(e)] than the perturbing terrfwhich is of O(é%)],
deed that, for a wide range of parameterand « inside this and the soliton position to vary on a shorter time scale
domain, all other discrete eigenvalues of the operdtbave  (~¢ 1) than that which is naturally associated with the per-
a negative real paft7]. However, a comparison of the sta- turbation(i.e., ~¢ 2). The justification for this choice will be
bility domains as obtained from the adiabatic analysis andlear later. Essentially, it is related to the possibility of sat-
from direct linear stability analysis shows that an instability isfying the secularity conditions when the PGL equatitn
due to the emergence of a discrete eigenvalue with a positileecomes conservative. Furthermore, as we want to study the
real part may arise for weak dissipation and for strong parainfluence of perturbations both in dissipatie+0) and in
metric pumping[7]. The effects of this instability on the conservative(\=0) cases, it is useful to set=Ay+e\;.
soliton dynamics were numerically investigated in R&0)]. Hence the dissipative case correspondsyt0, while \;=0

In this paper we will consider only parameter values whereand\;#0 correspond to what we will call the weakly dissi-
such instability is absent and the solitary wd@gis linearly  pative limit. Note that in this limit dissipation is weak, but of
stable. This implies, in particular,9<0 and A<wx lower order than the perturbatiaAP. In order to distinguish
<\A\Z+ 92 As a final remark, it should be noted that in the the weakly dissipative limit from the genuine dissipative
dissipationless case, i.e., far=0, the system described by case, we will call the latter one the strongly dissipative limit.
Eg. (1) is conservative, as it can be derived from a LagrangFinally, the conservative case is recovered from the weakly
ian density[14,15. In this case the eigenvalu¢) of the  dissipative limit by further setting,=0; any eventual dissi-
continuous spectrum lie on the imaginary axis, indicatingpative term of orde#” can be included into the perturbation
that the solitary wavé€2) is marginally stable with respectto P.

radiation modes. Introducing ansatZ8) into Eq. (7), using the derivative
rule 0= dr +edr + 525T2+ --- and collecting the terms of

Ill. EVOLUTION EQUATIONS the same order in the equation so obtained, a hierarchy of
FOR THE PERTURBED SYSTEM equations for successive correctionsutds obtained. If the

phase ¢, in Eq. (7) is chosen in such a way that

In this section the evolution equations for the solitarycog(z%):)\o/ﬂ, it follows that the solitary wave solution®©
wave under the influence of a perturbation are derived agt leading order is given by
solvability conditions in a multiple scale perturbation expan-
sion analysis. This method is quite standard, and it consists u©(x)=v286 sech B(x—&)], (10)
of assuming as the solution at leading order in the perturba-
tion expansion a solitary wave of the unperturbed systenyhere g=[—9+(u>—\3)"?|*? 5==1, and the soliton posi-
whose free parameters are allowed to vary slowly in timetion ¢ is an arbitrary function of the slow time variables
The slow time evolution of the soliton parameters is thent, T, . but is constant with respect W, i.e., dr £=0.
obtained by eliminating secular terms arising in the pertury 0
bation expansion3,17,18,2]. The starting point of the
analysis is provided by Ed1) with a perturbation term

ote that, in writing Eq(10), we have explicitly shown the
two allowed values of the solitary wave phase by introducing
the parameteb. The equations at higher orders may be cast
_ . T in the form

AU=(—N+iu+puu* +idu+iv-u* +ePLu], (7)

K _ ,y =gk

where € is a small parameter which defines the order of s Lu G D
magnitude of the perturbatio[u]. The problem is to con-
struct an asymptotic approximation of the perturbed solutio
u=u(x,t;e) ase—0 which is valid uniformly in time. There-
fore, we seek a perturbation expansioruah the form

n(k=1,2,3,..), where the linear operatdt is given by Eq.(5)
with A=\,, andG™® depends only on functions of previous
approximations. In particular, one has

. (€0 J—— 0 _ (0)
u:[u(0)+ eu® + EZU(2)+"‘]GX[_XI(,DO), (8) G AU (9-|—1U , (12

where the constant phase factgyin Eq. (8) will be defined ~ G®'=—\;u™™ — g7 u =1 u@ +iu@u20M* +u)]
later, and we require that the asymptotic expangi@nbe

uniformly valid in time. This condition can be generally sat- +P[u'® expli o) Jexp(—i@o). (13
isfied assuming the unperturbed solitary wé2gas a solu-

tion at leading order in the expansi¢8) provided that the In general, because the operatdris singular, the solution
soliton position¢ is allowed to vary slowly in time. This u® of Eq.(11) will not be a limited function off, unless the
degree of freedom is fundamental in order to remove seculairiving term G in the equation is orthogonal to the null
terms that arise in the perturbation expansion. To this aimspace of the adjoint operatat”. Thus, to avoid secular
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terms in Eq(11), which prevent the solution® from being o0
bounded in time, the following solvability conditions must ~ BMdr, &= Re{j fP exp(—igg)dx
be satisfied: o
1 +oo
(G, w)=0, (14) W 'm“ _ou@P exp(—igg)dx|,
wherew is the singular eigenvector of the adjoint operator (18

L£*, and the brackets indicate the inner product defined by
where the parameten>0 is defined by

(A,B)= Re[ f+xA*(x)B(x)dx .

— 00

1 [+

m=— B J fou@dx, (19

This corresponds to the usual scalar producRfonce the o

complex quantities are separated into real and imaginary

parts. Hence the solvability conditioiis4) allow one to de-  and the perturbatiorP is intended to be calculated for

termine the evolution equation of the soliton positiomn  y=uy® expi ). The total time derivative of the soliton po-

various slow time scales. The singular eigenveetoof the  sition is given bys,é= edr &+ €2d7.&+-++ . Then combin-
.. + - . - . . 1 2

adjoint operator. ™ is computed in Appendix A, and is given ing Egs.(17) and (18), we finally obtain the following time

by evolution equation:
W(X)=—2\of[ B(x—&)]+ia,u® (15)
—+ oo
BmMaé= e Re{f fP exp(—ipg)dx

— o0

where the explicit expression of the real functibfy) is
given by Eqs(A18) and(A19) in the same appendix. It turns )

out thatf is an odd function ofx—§&), has only one zero at _m J”a UOP exnl —iondx 20
x=¢, and assumes opposite sign as®). To further pro- 2\ o X A~ ieo)dx], 20
ceed in the analysis, the two casest0 and\,=0 must be

distinguished.

which is valid up to the long-time scalee 2 It should be
noted that the constant defined by Eq(19), which gives a
A. Strongly dissipative limit (Ao#0) measure of the soliton “inertia” to the applied perturbation,
In this case, the solvability condition &(e) yields is a function only of the parametey given by Eq.(A6),
which may vary in the interval €q<1. The limitsq—0 and
q—1 correspond tqu—(\3+ 9?2 and u—N\, respectively,
i.e., to the two stability boundaries of the solitary wave. Nu-
merical computation ofm by use of Eqs(A18) and (A19)
shows that forg—0 the soliton massn diverges together
) ) ) with the functionf, while the ratiof/m remains bounded. In
—dxU™dr £ Becausef anddcu™ are odd functions ofx  this |imit, the last term on the right-hand side of EG0)

+
f (07,€0,u P =\ uO)f dx=0, (16)

— o0

where we used the relationdr u®=g.udr é=

— &), andu@ is an even function, Eq16) yields may be neglected. Conversely, it turns out that the soliton
mass remains limited and approaches the vat#€l in the
ar,§=0, (17)  opposite limitg—1.
i.e., the soliton position does not vary on the time sdale B. Weakly dissipative limit (Ay=0)

The solution at this ordem®=u{V+iu, then satisfies

the following equations: In this case, the solvability condition &(e) is always

satisfied, and the solution at this order is given by

g7 ust = Lus = =N qu',
° (21)

)\1
(D —=j ——= 4O
u |[faT1§ o utt 1.

1 U5~ Lo + 20 g =0,

This fact is closely related to the conservative nature of the
It is straightforward to show that the former equation can beunperturbed PGL equation in the weakly dissipative limit,
satisfied by settinguY=—(\,/2)(x?—73) Y@, and where the linear operataZ becomes self-adjoint, and the
that the solutioru® of the latter equation may be chosen to driving term G¥ associated with the slow soliton motion is
be an even function of its argument. Applying the solvability always orthogonal to the singular eigenvector &f[17].
condition atO(é?), after observing that for trivial symmetry Hence the evolution equation of the soliton position on the
properties the terms A ,u® andiu@[2uMu®* +y®? of  time scaleT, must be determined by imposing the solvability
G are orthogonal tav, we obtain the following evolution condition atO(e?). The derivation of the solvability condi-
equation for the soliton positio& on the time scald,: tion at orderé® is rather involved, and details of the calcula-
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tions are given in Appendix B. It turns out that the evolutionis merely to introduce a static modification of its shape. As a
equation of the soliton position on the time sc@lgis given  final remark, we note that in dissipative systems a weak per-
by turbation does not excite radiation modes because the con-
tinuous eigenvalue spectrum of E@) has a negative real
Bm&$l§+ 2)\1ﬂm&T1§ part. This is obvious in the strongly dissipative limit, where
radiation modes are damped on the time sc&je In the
weakly dissipative limit, this result is still valid. In fact, in
this case the damping rate of the radiation modes is Sivfall
order ~e¢), but it is of lower order than the perturbing term
Using the derivative rul@ = edr + e®dr,+ -, and observ- (~é); that excludes excitation of radiation modes. Con-

+ oo
+1Im f a,u QP exp —igg)dx|=0. (22

ing that\=e\,, from Eq.(22) we finally obtain versely, in the conservative case the continuous spectrum of
’ the linear operator’ lies on the imaginary axis, and the
,8m<912 E+2NBMo,E solitary wave is marginally stable with respect to the growth

of radiation modes in the unperturbed problem. When the

perturbation field is considered, secondary secularitiss-

ally called resonancd48]) might arise whenever the driving

terms in Eq.(11) are resonant with radiation modes. The

which is valid up to the time scale-e . In particular, for ~ study of these resonances is a nontrivial matter, and would

A=0, Eq.(23) describes the soliton dynamics for dissipation-equire the knowledge of the continuous part of the Green

less systems. function associated with the operat6r[18]. This analysis,
Equations(20) and (23) represent the main results of this however, goes beyond the purpose of this work and will not

section, and allow one to study the effects of a generic perbe done here.

turbation on the soliton dynamics. Before discussing some

particular forms of the perturbatioR, which will be the IV. ANALYSIS OF SOME PARTICULAR

subject of Sec. IV, a few general comments on the results PERTURBATIONS

obtained and their limits of validity are in order. Contrary to

the NLS equation, the PGL equatigfh) has only transla-

tional symmetry, so that its solitary way@) has only one

family parameter, the soliton positigh The effect of pertur-

bations on the solitary wave is merely to change the solito ) X

position on a slow time scale. According to the dynamicalWaves under the action of a perturbation.

equationg20) and(23), the typical time scale over which the (1) Ext.ernal driving fqrce.As a first simple_ example Of.
soliton motion occurs is-e 2 if the unperturbed PGL equa- perturbation, let us consider an external applied force, which

tion is dissipative, and-e ! in the conservative case. This W€ assume to be independentoénd dependent only upon

means thatissipativesolitary waves react to the applied X -6 |6t us assume
perturbing field on a longer time scale theanservativesoli-
tary waves. Hence we may conclude that dissipation in the

unperturbedsystem plays a fundamental role in reducing theWe further assume thef(x) is a real function ofx and

motion induced by perturbations. varies slowly on the scale of orders L. In this case, the

h-.”;]'s ru'ﬁ IS rlather gteneT%I, Ibu]f pterturbatlor:s be)f['_;t forequation describing the soliton motion in the strongly dissi-
which such a rule is not valid. In fact, any perturbatiBn - ve jimit becomes

such thatP[u® expl(i o) lexp(—i o) is a real function in-
duces a slow motion of dissipative solitons on the time scale IF

~€ 2 provided that the first integral on the right-hand side in Bma &= eZD(—) , (25
Eq. (20) does not vanish. On the contrary, for weakly dissi- X/ ¢

pative or conservative systems, from Eg2) it follows that

dr £=0, i.e., the perturbation does not induce a motion ofwhere

the soliton on the time scale *. Since Eq(23) is only valid cog ¢o)
up to the time scale ™%, it is not capable of describing the D= >
slow soliton motion on longer time scales, and solvability B

conditions at higher orders should be considered. In particu- . .
lar, one can find a general class of perturbations which dé & constant parameter independeniofrom Eq.(25) it

not induce any soliton motion if the system is conservative,onows that the stationary fixed points of motion satisfy the

while they cause a soliton motion if the system is dissipative€duation ¢F/dx).=0; these equilibria are then stable states

This class of perturbations is discussed in Appendix cProvided thatD(9°F/9x*)<0. In the weakly dissipative
where it is shown that a regular asymptotic expansion of thdmit, Eq. (23) yields instead

solution of Eq.(7) can be constructed in the conservative oF

case. In other words, the secularity conditions at each order mat2§+2)\m&t§+Dez(—) -0, (26)
can be satisfied for these perturbations without requiring any IX ] ¢

slow-time dependence of the soliton positi@nThis means

that the effect of the perturbation on the unperturbed solitorwhere now

+ e
+ €2 Imf U QP exp(—igy)dx|=0 (23

— o0

In this section we specialize the dynamical equati@s
and(23) to study the effects of some particular perturbations
on the soliton dynamics. These examples allow us to show
fthe different behavior of dissipative and conservative solitary

€’P=€’F(x). (24)

V2mé

+oo Si )
Lc yH(y)dy+ 2(;00
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Sin(eo) [+* o), V2m3 Sin(go) and it travels with a small constant velocity. The other per-
- B XU dx= —,3 : turbation we briefly discuss is related to third-order disper-
- sion, and is given by

Equation(26) indicates that in this case the soliton behaves ) 53
like a particle of massn in the potentialU (&)= e’DF (&) e“P=¢€"d,u. (31
under the action of a viscous force which is proportional to _
the dissipation coefficient of the system. The stable equi- In the strongly dissipative limit, the effect of the perturbation
librium points of motion are hence represented by the(31) is to induce a constant drift of the soliton position of
minima of the potential. Note that, due to the presence of th@rder € in a similar way as for the perturbatid@?). In the
viscous force, the motion induced by the external potential igveakly dissipative limit, from Eqs22) and (31) it follows
counteracted, and an equilibrium point is asymptoticallythat the driving term vanishes arg £=0. In other words,
reached. In particular, the transient stage toward the equilitin this case the perturbatiaf31) does not induce a soliton
rium point £ is oscillatory if N><(1/m)(#°U/dx?), and  motion on the slow time scale e %, and solvability condi-
monothonic in the opposite case. In the conservative casions at higher orders should be considered. We note that
(A=0), the viscous force in Eq26) disappears, and oscilla- perturbation(31) belongs to the general class of perturba-
tions of the soliton position around the equilibrium points aretions discussed in Appendix C, and therefore in the conser-
allowed. vative case third-order dispersion does not induce a drift of
(2) Higher-order terms.The dynamical model expressed the soliton.
by the PGL equatior{l) is usually obtained by neglecting (3) Stochastic perturbationdhen the physical system is
some higher-order terms which generally describe physicaubjected to noise sources, the soliton positfomay un-
effects of a small entity. Among these effects, here we coneergo a stochastic motion due to the translational invariance
sider the delay in the nonlinear response of the system anof Eq. (1). This effect is well known for the NLS equation
higher-order dispersion. These perturbations are of particulaand, in nonlinear optics, it is known as the Gordon-Haus
interest in the optical context, where their effects may pro-effect[23]. The effect of noise on the soliton dynamics can
foundly affect soliton propagation in long distance solitonbe captured by assuming a perturbation of the form
transmission systenj&2]. The noninstantaneous response of
the nonlinearity gives rise to the following perturbing term: e’P=€%o(x,1), (32
e’P=—i€e’ud,ul®. (27 \whereo=a,+i0, is an appropriate complex stochastic vari-
le whose statistical properties depend upon the physical
ture of noise. A simple case is that where the stochastic
leld o can be represented by two real independent Gaussian
stochastic functions; and o, of zero mean value with cor-
relations defined as

In the optical context, this perturbation describes nonlinea?lb
dissipation generated by the induced Raman scattering, al
is responsible for a frequency downshift of optical solitons
[22]. In the strongly dissipative limit, the equation for the
soliton position under the action of the perturbati@i) be-

comes (o1(X,t)op(x',t"))=0,
m(%é:z—io. (28) (o1 (X, )y (X' ,t))=D18(x—x") 8(t—t"),
where the constant parametgiis given by (oa(X, D)oo (X",17))y=D,8(x—x")8(t—t"). (33
S=2—€2 f+m[u(0)o7xu(0)]2dx=3—2 2%, (29) For instance, in the context of optical solitons, stochastic
B J-w 1 sources with correlations given by E3) may describe

guantum fluctuations as well as phase nés&h as that due
Hence the effect of delay in the nonlinear response is tao guided-acoustic-wave Brillouin scatterinfR4]. Setting
induce a drift of the soliton position with a constant velocity Eq. (32) into Eq.(20) and using the correlations given by Eq.
v =16€?B*15\ym which is of orderé®. In the weakly dissi- (33), we find that the equation of motion for the soliton po-
pative limit, Eq.(23) yields instead sition in the strongly dissipative limit is described by the
) Langevin equation
md; é+2xmgé—S=0, (30
whereSis given by Eq(29). Therefore, i\ #0, the effect of Amag=S(t), 34
the perturbation is the same as in the strongly dissipativ
limit, except that now the constant drift velocity is of order
In the conservative case, which is obtained by se#tin® in
Eq. (30), the soliton motion is different, and is characterized o
by a continuous acceleration. This result is analogous to that p = €4le
predicted for conservative solitons in the NLS equation,
where the acceleration of the soliton is also associated with a .
continuous frequency downsh[2]. Hence the acceleration + 64sz
of the solitary wave stabilizes when the system is dissipative,

Where the zero mean value, real stochastic t&(t) is &
correlated with the diffusion constant

2
dx

1
f cog pg) + 5 sin( o) dxu'®
2o

—oo

2
dx.

fsin(qo)—icos{ )a,u'®
0 2No $o)0x

—o0
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The motion of the soliton is hence described by a Wienedissipation in the original system is able to reduce strongly
process. The mean-square fluctuations of the solitary-wavihe stochastic motion of solitons induced by external noise.
position increases linearly with time according to the law (4) Soliton interactionsThe perturbative approach devel-
) oped in Sec. lll can be used to study interactions between
(A& = (_) i (35 two (or _ more weakly overlapping sollta_ry waves. The
mg/ method is rather general and may be applied both to conser-
vative and dissipative systeni$7,26,27. It consists of as-
whereA £(t) = £(t) — &, and & is the soliton position a=0.  suming a superposition of two individual solitary waves at
In the weakly dissipative limit, the equations of motion for positions¢; and ¢, as a solution of the nonlinear wave equa-

soliton position¢ and soliton velocity are tion (1). Because of the nonlinearity, this solution is not ex-
act, but it represents a reasonable approximation provided
hé=v, that the solitary waves are weakly overlapping, i.e., for
1<B(&—¢;). The overlapping terms arising from the nonlin-
mBdw = —2m\ v + (1) (36)  earity in the wave equation may then be regarded as pertur-
) . . bations to two wave equations for single solitary wa\Z§.
V\{herg the real stochastic ter8{t) is & correlated with the Using standard approximations to calculate overlapping
diffusion constant integrals[26], in the strongly dissipative limit we obtain the

. following equations for the soliton positiors and &:
D=$€'£°(D; cog(¢o) + D Sirf(go) . ged positiorts and,

88%5,6
Equationg36) may be regarded as the Langevin equations of atglzg exd —B(&—€1)],
motion for a Brownian particl¢25]. Assuming that at the Aom
time t=0 the soliton has thédeterministi¢ position £é=§&, 84%5. 5
and velocityv =0, it is straightforward to calculate the time ifp=— 867010 exd — B(&,— &1)]. (40)
evolution of the mean value and of the mean square fluctua- Aom
ion for th li iti ith hni .
382 ﬁ%t e soliton position with standard techniqUes] The evolution equation for the soliton separatibé=&,— &,
is hence
<§(t)>2501 (37) 165152B3
JAE=— ————exp(— BAE). 41
(] 3 s A= - — = exp(— A (41)
([A6019=|g) |~z ~z&w-2U7) _ . .
From Eq.(4)) it follows that, according to previous results

[11,13,14, the two solitary waves attract each other for
(38 66,=1, i.e., if they have the same polarity, whereas they
repel for6,6,=—1, i.e., if they have opposite polarity. In the
former case, the soliton separation decreases with time, and
the waves collide. However, the perturbative approach may
not be used to study soliton dynamics during collision when
their separation becomes comparablestd'. Previous nu-
merical investigations on the two-wave states for the PGL
)2 , equation have shown that, in the dissipative case, the two

+27exp—t/7)+t

where 7=1/2\ is the damping time associated with the vis-
cous force. From Eq(39) it follows that, for timest much
shorter than the damping time the behavior of[A&(t) ]2
may be approximated as

<[A§(t)]2>w% (miﬁ attracting solitary waves collapse into a single solitary wave
with the same polarity, and that, during the collision, half of
i.e., in the first stage the variance of the soliton positionthe fielq energy is transf_erred into di_spersive waves which
increases with the third power of time Conversely, for are rapldly attenuatz_ad with propagatipts]. The previous.
timest larger thans, one has gnalysm can be easﬂy extended to study sollton interactions
' in an extended chain of weakly overlapped solitary waves.
Dr\2 Because of soliton interactions decreasing exponentially with
([Ag(t)]2)~<—> t, soliton separation, only nearest-neighbor overlapping terms
mp may be considered in the perturbatién In this case, the

i.e., the variance of the soliton position increases IinearIyCOUpIed equations for the soliton positiogysin the chain are

with time as in the strongly dissipative limit. The conserva-glven by
tive case is recovered from E(B6) by settingh=0. In this 83°
case, the mean square fluctuation of the soliton position is &t§n=m (6nbn+1 exXd— B(Enr1— &n)]
given by 0
1 2 _5n5n71 exq_ﬁ(fn_fn—l)])y (42)
PN i
([A&(D1%)= 3 (m,B) t (39 where g, is the polarity of thenth solitary wave in the chain

andé¢, > &, . According to Ref[13], an infinitely extended
which has a time-dependence typical for NLS solitp23]. chain of solitary waves with polarity alternatiofi.e.,
A comparison of Eqs(35) and (39) clearly indicates that &,8,,,=—1) and uniform spacing\ (BA>1) is a stable
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solution of Egs(42). This solution corresponds to exact pe- conservative or dissipative character of the unperturbed
riodic solutions of the PGL equation in the form of cnoidal problem. As a rather general rule, it turns out that dissipation
waves[2,13]. in the unperturbed system is able to counteract the motion
Let us now consider interactions between two solitons innduced by perturbations. This behavior has been discussed
the weakly dissipative limit. In this case, from E@3) we in detail by considering some particular perturbations, which

obtain the following dynamical equations: include external driving fields, higher-order correction terms
in the unperturbed equation, noise sources, and soliton inter-
MJ7E+2Amaé; — 16835, 8, ex] — B(&,— £1)]=0, actions. We envisage that such results may be of interest
(43)  both from a fundamental point of view in understanding non-
MJ; &+ 2Nmdé,+166°8,5, ex — B(£,— £1)]=0. linear dynamics of dissipative versus conservative solitons

. . ) under the action of perturbations, and from an applicative
From Egs.(43) it follows that the soliton separatioh¢ sat-  point of view as well whenever robustness of soliton solu-

mIZAE+ 2 ma,Aé+328%5,6, exp— BAE)=0, (44) ACKNOWLEDGMENTS
whic_h may be int_erpreted as _the equation of motion of a Work was supported in part by the Joint Services Elec-
particle of massn in the potential tronics Program under Contract No. DAAH04-95-1-0038.

— _ 29022 _ The author acknowledges financial support by Associazione
v(ag 3257010, exp— BAL) Elettrotecnica ed Elettronica Italiana, as well as E. P. Ippen

under the action of a viscous force. As in the strongly dissi-2nd G. Steinmeyer for useful suggestions.
pative case, the force is attractive if the solitary waves have

the same polarity, and repulsive in the opposite case. Gener- APPENDIX A: SINGULAR EIGENFUNCTION
alization of Eqgs.(43) to a chain of weakly overlapped soli- OF THE ADJOINT PROBLEM

tary waves is straightforward, and yields In this appendix the singular eigenfunctianof the ad-

. i :
MI2Eq+ 2NNy — 1683(8n0n1 1 X — B(Enr1—En)] joint operatorL™ is calculated. Letus first note that, because
Lq1, L12, L1, and L,, are self-adjoint, one has
~ 0nbn—1 eXH — B(£n—£n-1)))=0. (45)
o _ _ _ _ + (L1 Lan) [ O L3
In the case of an infinite chain of solitons with polarity al- L= L1 L) \ L1 —2Ng) (A1)

ternation(8,6,+1=—1), EQ. (45) show that the dynamics of

solitary waves due to their weak interaction is described by aherefore the singular eigenfunctiom=w, +iw, satisfies
Toda lattice model with frictioi28]. Because of the friction  the equations

term, any internal oscillation of the lattice is damped and the

periodic solutions of the PGL equation with uniform soliton LoW,=0, (A2)
spacingA (BA>1) are asymptotically reached. On the con-
trary, in the conservative limit, the friction term in E@5) LW =2N\W,. (A3)

disappears, and collective excitations of the lattice are al-

lowed. In particular, compression waves at a constant velocEquation(A2) has the solution,= 9,u(?), whereas Eq(A3)

ity may propagate through the lattit28]; they are given by can be satisfied by setting; = — 2\ of[ B(x— &)], where the
function f(y) satisfies the following nonhomogeneous

1 ) . .
Fo=— 5 IN[1+ w? sechSn=+ wt)], (46) second-order linear equation

2
wherer,=¢,—&,_,—A are the displacements of solitary —q+ cosRy +ay | f=h(y), (A4)
waves in the chain from the peri?dic solution with uniform
spacingA, w=[16p" exp(—BA)m]** sinhX, andX is an ar-  ith the boundary conditions lip, ....f(y)=0. In Eq.(A4)
bitrary parameter which determines the velocity of propagaye set
tion and the compression factor of the collective wave.
sinhy
V. CONCLUSIONS h(y)==v20 ospy (AS)

In this paper the dynamics of parametrically excited soli-
tary waves induced by perturbations has been theoreticall?nd
investigated by using a direct perturbation approach. As the
parametric term in the unperturbed equation breaks three of q={
the four symmetries which are typical of the NLS equation,
the effects of a generic perturbation on the soliton dynamics
is simply to induce a motion of the soliton on a slow-time Note that the parametergiven by Eq.(A6) may vary in the
scale. It has been shown that the typical temporal scale ovénterval [0,1] in order to ensure the stability of solitary
which the soliton motion occurs depends strongly on thevaves. The solution of EgA4) can be obtained by the

— = (ul—\2) V212
(u o) } (A6)

— 9+ (u?=xp)
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method of variations of constants using a fundamental set oAPPENDIX B: SOLVABILITY CONDITION AT ORDER €

solutionsuy (y), u,(y) of the associated homogeneous equa- | ;¢ appendix, the evolution equatit@?) of the soliton

tion position on the time scal&, is derived by imposing the
2 solvability condition atO(é%). From Egs.(13) and (21), it
—g%+ oSy +3d;|u=0. (A7)  follows that the driving termG? is given by
A set of fundamental solutions to E¢A7) can be easily G(2)=a0&T2§+i[a1+ azdr &+ ag(aT1§)2+ a4c9$l§]
obtained by considering the variables
+Pu® expli o) Jexp —i¢o), (B1)
w=tanhy, (A8)
where
u(y)=F(y)exp(=qy). (A9)
Introduction of Eqs(A8) and (A9) into Eq. (A7) yields the ag=dxu®,
following equations for the unknown functidf(w):
(0)2
(1- ) PF—2(07q)d,F+2F=0,  (A10) =Ly S|
2u 2u
which admit the elementary solutions
Fidw)=w+q (A11) a,=—Nyf— M J,u®— M Fu@?
2u M

The solutions given by EqA11) correspond to the follow-
ing functions for the original variables

9 9 az=dyf +f2u®,

uy(y)=(tanhy—q)exp(qy), (A12)

a4: - f

ux(y)=(tanhy+q)exp(—qy). (A13)
Because the eigenfunctiam of the adjoint problem is imagi-
nary and an odd function dk—¢&), the terms inG® propor-
tional toay, a;, andag vanish when imposing the solvability
=-2q(1-g?. (A14)  condition(14). Therefore we obtain

The Wronskian ofu; andus, is given by

Uy u;

W=lau ayu,

BecauseNV+#0 whenq varies in the interval0,1], solutions

+ oo
(0) —j =
(A12) and(A13) are linearly independent. The solutiby) f o IxUTP exp( =i po)dx| =0,

BMds &+ N\ kBT E+Im

of the nonhomogeneous equati@®) is hence given by (B2)
FY)=Va(y)us(y) +Vay)uz(y), (AL5)  \here the parameters andk are given by
where
1 + o0 0 + o0
Vi(y) Jer h(z)ux(z) g A16) m=— ] f fa,ul dx=—f f(y)a,a(y)dy,
— - = - Z, — o0 —
T, W (B3)
y h(2)uy(z) 2 s 2 o
Valy)= f w9 (ALD - k=m- f—ﬂ f ) [ayg]zdy—% f f)GEY3,9(y)dy,

. . . B4
and the constants of integration have been chosen by impos- B4

ing the vanishing of (y) for y—=*c. Using the symmetries

V1(y)=V,(—y) anduy(y)=—u,(—Yy), we finally obtain and g(y) =v2d&/coshy. The expression of the parameter

can be further simplified. In fact, the functiofsandg sat-

f(y)=Ty)—T(—y), (A1g) isfy the following equations:

where (—9*+a)f+g’f=4,9, (B5)
v26 exp(qy)(tanhy—q) 2

Ty)= 2q(1=) (—1+4y)g+g°=0. (B6)

o f -y exp(qz)sinh z(tanhz—q) dz (Alg) Multiplying both sides of Eq(BS) by d,g and integrating
o cosit z over the interval—o,+), we obtain
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—+ oo + —+ oo
f_m (9,9)%dy=g’m+ f_m 9%fa,g dy+ f_m gfayg dy.
(B7)

The last integral on the right hand side in E§7) can be

transformed by successive integrations by parts, using Eg.

(B6), we obtain

+ oo + oo
f ALNe dy=—jiw d,f(g—g®)dy

—

+
- f f(3,9-3g%,0)dy.  (BS)

Insertion of Eq.(B8) into Eq. (B7) yields

+

+oo *
f (ayg)zdy=(q2—-1ﬂn—-2J‘ fg?9,g dy. (B9)

— oo — oo

After observing thats%u=2/(1—q? from Egs. (B4) and
(B9), one has

k=2m. (B10)

Putting Eqg.(B10) into Eq. (B2) we finally obtain Eq.(22)
given in the text.

APPENDIX C: REGULAR PERTURBATION EXPANSION
FOR CONSERVATIVE SOLITONS

In this appendix it is shown that for the PGL equatidn

in the conservative case there exists a general class of per-
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wherea= € and g,=/4. Substituting Eq(C2) into Eq.(7),
and collecting terms of the same orderdna hierarchy of
equations for successive corrections uois obtained. At
leading orderO(a?), the solutionu© is given by Eq.(10).
The equations at higher orders have the form
Lu®=—-c® (C3
where £ is the linear operator given by E¢) with A=0,
and G™ are driving terms which depend only on functions
of previous approximations. Becaugés singular, due to the
Fredholm alternative theorem a bounded solution of(Eg)
exists if and only if the driving term in the equation is or-
thogonal to the singular eigenfunction=id,u(® of the ad-
joint problem. Therefore the perturbation expansi@®) is
consistent provided that the solvability conditions
(G®,w)=0 are satisfied at any ordér This can be easily
proved for k=1 and 2. In fact, fork=1 one has
GW=—7u®, which is a real function and therefore orthogo-
nal tow. The solution at this order is imaginary and is given
by u=ip,, wherep, is an odd function ofx—&) which
satisfies the equatiafi;,p;=—Fu'?. At orderk=2, we have
G@=—2iu@u®2—FuY, which is trivially an imagi-
nary, even function ofx—¢). Hence it is orthogonal tev.
The solution atO(a?) is then given byu®=p,, wherep, is

an even function ofx—#&), and £;,p,=—Im[G?]. By recur-
sion, it is straightforward to show that, in genei@f? (u)

is an imaginaryrea) and even function ofx—¢) for k even,
and a realimaginary odd function of(x—¢) if k is odd. In
any case, the solvability conditionS{,w)=0 are always
satisfied. To prove this property, let us assume that it is valid
up to the ordekk=n—1 (which, without loss of generality,
we assume to be everand let us show that the same prop-
erty is still valid fork=n andk=n+1. In fact, the driving
term G® at orderk=n has the form

GM=—i> uMyEyn-s—m*_ (-1 (Ccy)

turbations which does not induce any soliton motion. This m,s

means that a statig.e., independent of time) perturbation

expansion of the solitary wave for the perturbed Etj.can  Where the sum in Eq(C4) is extended to all non-negative
be constructed. The class of perturbations we consider hdgtegersm ands such that 8<s+m<n. Becausen is odd, it

the form

Plu]=Fu, (C)
whereF is a linear, real operator, independent gdatisfying
the property that, ify is an arbitrary evertodd) function of
(x—§), then Fg is an odd(even function of (x—¢&). As an

follows that each term in the sum is composed of the product
of three functions of odd order, or of the product of two
functions of even order and one of odd order. In both cases,
it turns out that each term is a real, odd function(f-¢).

This is trivially true also for the last term in E¢C4). Hence
GW® is orthogonal tow. The solution aD (") is then given

by u™=ip,, where the real functiop, is determined as the

example, any linear combination with real coefficients of op-solution of the equatiorC;,p,=—G". Furthermore, it is

erators of the formxX—&)"ay, with m andn positive inte-
gers anch+m odd, satisfies this property. From E48) it is

obvious thatp, has the same parity a(". Fork=n+1,
similar arguments can be used to show tBAf*Y is an

clear that in the strongly dissipative limit the driving term on imaginary and even function ¢k—¢), and so it is orthogo-

the right-hand side of the equation does not vanish, and penal to w. The solution atO(a"*') is then given by

turbation (C1) induces a soliton motion on the time scale u"*=p_ ., where the real functiop, ., ; has to be deter-

€ 2. In the conservative limit, we look for a regular pertur- mined as the solution of  the equation

bation expansion of the solution(x,e) of Eq. (7) in the C%lpn 1=—Im[G("" Y], and has therefore the same parity as

form G In conclusion, the solvability conditions at each or-
der in the perturbation expansion are satisfied, and a hierar-
chy for successive approximations tocan indeed be con-

u(x,€)=[u@(x)+ au®(x)+ ?u@(x)+ - - - Jexpi o), structed. The difficult problem of asymptotic convergence of

(C2)  the resulting perturbation series is left out in our discussion.
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